
Agnes Chang

Thesis Proposal for the Degree of Master of Science at the
Masachusetts Institute of Technology
Fall 2009

Multiple-perspective interfaces for
software development environments

David Small
Associate Professor
MIT Media Laboratory

Mitchel Resnick
LEGO Papert Professor
of Learning Research
MIT Media Laboratory

Casey Reas
Professor
UCLA Design | Media Arts

Thesis Advisor

Thesis Reader

Thesis Reader

Abstract

Motivation

Context

Methodology

Contributions

Evaluation

Thesis Readers

Resources

Timeline

References

3

4

6

8

11

12

13

14

14

15

Table of Contents

3

	 One of the major barriers designers and artists encounter when pro-

gramming digital media is the difficulty of translating the mental models of

their creations into a format and language that can be interpreted by comput-

ers. Creative people exhibit a variety of ways of thinking, and the constant

necessity to translate between their personal mental model and the program-

ming paradigms dictacted by current software representations limits the

programmer’s creative potential.

	 This thesis proposes to research, design, and implement a novel inter-

face that enables the programmer to define a conceptual visual representation

of computation to complement the traditional text-based code. In particular,

this work will focus on the following: the design of the set of visual vocabulary

necessary for idiosyncratic conceptual representation, the maintenance and

display of relationships between the visual and textual elements, and finally

interface support of multiple programming styles throughout different pro-

gramming stages of writing, reading, and debugging. The thesis seeks to offer

alternative methods of organizing, understanding, and learning programming

so that software can be a more accessible and expressive medium for all types

of designers and artists.

1. Abstract

INTENTION MENTAL MODEL CODE OUTPUT

cognitive
translation

Fig. 1: The creative process.

4

	 Artists and designers often have clear intentions of what they would

like to create in the software medium, as well as mental models of how to

go about achieving the desired output. The real difficulties are encountered

when translating the mental models of their creations into code that can

be interpreted by computers. This thesis seeks to alleviate the tedious and

redundant aspects of congitive translation that currently form a significant

bottleneck in the software creative process.

	 In the creative process (Fig. 1), the artist begins with an intention (be

it well-formed or indefinite), then forms an internal model about the prob-

lem, and translates the model into code, which in turn produces the output

program. The translation process is difficult due to incongruities between

individuals’ approach to problems and the design of the particular program-

ming language. This step poses an obstacle even for expert programmers: after

setting a project aside for a short amount of time, when coming back to the

code, even the original author usually has difficulties recalling their train of

thought when they were writing the program.

2. Motivation

Fig. 2 to 4: Examples of three
individuals’ conceptualization of the
classic two-player pong game.

5

	 More importantly, people exhibit a variety of approaches to thinking

about problems [16]. A preliminary examination of individuals’ visual repre-

sentations of their mental models (Fig. 2 through 4) demonstrate that mental

models comprise a variety of information. Some are functional descriptions,

such as “bounce a ball” (Fig. 2), while others are system elements, such as

“interface” and “buttons” (Fig. 4). DiSessa [2] has identified these types of

information as belonging to a functional model versus a structural model,

respectively. Each individual’s mental model is a combination of mental and

structural models fromed from personal experience — experience with vari-

ous programming paradigms, experience with the platform of choice, and

experience with the nature of the project they are trying to create, etc.

	 Further, since the nature of creative work is reiterative, throughout

this process the mental model is continuously revised and cognitive transla-

tion is continuously revisited. The creative process also applies at different

scales: in the pong scenario, the author might have intentions and models for

the behavior of a singular ball as well as a vision of a meta set of pong varia-

tions, and there are cognitive translations necessary at each of these scales.

	 However, a multiple perspective interface that enables documenta-

tion of the mental model in complement with traditional text-based software

creation can ease many of the difficulties with cognitive translation. It is the

intention of this thesis to demonstrate that by allowing users to represent

their idiosyncratic mental models and to use such representations to create,

maniputlate, and explore their programs, the process of creative coding can

become more direct and intuitive.

Fig. 5: The Unified Modeling Lan-
guage has a strict ruleset governing
its visual vocabulary and syntax.
From [17].

Fig. 6: Screenshot of the Max/MSP
visual language, which employs a
“river metaphor” for programming
streaming audiovisuals. From [8].

Fig. 7: Quartz Composer is a visual
programming language based on
the depiction of dataflow. From [12].

6

	 While no work has yet directly addressed the cognitive translation gap,

this thesis is informed by long traditions of research in software writing and

software comprehension tools. In particular, the ideas proposed in this work

are a derivative of the inter-related fields of software visualization, graphical

modeling languages, and visual programming languages, each of which have

sought to address various bottlenecks in the creative process.

	 Much of software comprehension tools focuses on illustrating the

hidden mechanisms of the software, i.e. the structural model, such as data

flow and control flow. Software visualization designs vary from the aesthetic

[7] to the analytic [3], and some are interactive [9]. Graphical modeling lan-

guages, such as the industry standard Unified Modeling Language [17], aimed

to develop a standard visual language to describe system structures. However,

in addition to passing over functional information, software visualization and

graphical modeling languages also operate disjoined from the programming

activity itself.

	 Certain visual programming languages employ structural perspectives

which offer alternative programming paradigms that align more closely with

common mental models for the target tasks these environments were de-

signed to solve. Languages based on dataflow, such as Max/MSP [8], vvvv[18],

and Quartz Composer[12] aptly employ the metaphor of river and tributaries

for projects based on streaming audio and video. However, these metaphors

are not easily generalizable to other tasks.

3. Context

Fig. 8 & 9: Screenshots of PECAN
(1984), a program that supported
toggling between multiple views of
stored data structures. From [14].

Fig. 10: Screenshot of SHriMP
(1999), designed to support the
construction of a mental model dur-
ing software exploration. From [15].

Fig. 11: Screenshot of Field environ-
ment, which enables visual combi-
nation of code, interface, and output
elements. From [4].

7

	 Several research studies have also looked into the concept of a soft-

ware tool that presented multiple views. An early example is PECAN [14],

a program environment that supported toggling between multiple views of

stored data structures, although the multiple views did not apply to the pro-

gram structure itself. The SHriMP tool [15] specifically addresses a variety of

cognitive models in its design, but as an exploration tool, it was not designed

to accommodate the writing and editing of code.

	 Of recent work, the Field programming environment [4] still in the

beta development phase also takes a multi-paradigm approach, and more

specifically, the complement of code with user-defined visual abstractions of

code. In addition, the Field environment enables the combination of user-

defined visual elements, with GUI elements that can replace specific code

syntax, with elements of visual output. Unfortunately, the combination on a

single canvas of so many visual elements that are semantically distinct requires

even more translation and causes cognitive overload.

Fig. 12: Screenshot of the complementary visual-textual interface. By selecting the “draw right paddle” visual element,
the text representation automatically navigates to the associated code. The code here is a Processing implementation of
the classic two-player pong game, cf. Fig. 3.

8

	 This thesis proposes to address the cognitive translation gap by re-

searching, designing, and implementing a multiple-perspective interface that

allows programmers to manipulate their program via a visual representation of

their mental model. Fig. 2 is a preliminary sketch of the interface, illustrating

an example of a pong program. On the left side the programmer can create

their own mental representation, and on the right is traditional code repre-

sentation. The visual elements on the left will be linked to their respective

code fragments, so that upon selection of a visual element on the left, the text

display on the right automatically navigates to the associated code.

4. Methodology

Fig. 13: Sketch of non-linear code ac-
cess via the visual representation.

Fig. 14: Sketch of example of cross-
representation correspondence: :
drag-and-drop rearrangement of
code.

Fig. 15: Sketch of “bottom-up” pro-
gramming approach: creating visual
elements after text.

9

	 The goals of this interface are threefold. First, to allow programmers

to organize their code along visual and spatial dimensions, such as color,

shape, and location. Secondly, to serve as an extension of memory for users,

so that they can concentrate their efforts on the design of the project without

needing to continuously undergo the same mental translations as they reiter-

ate over they designs. Finally, such an interface can aid the learning process

by allowing users to reference their own past work, as well as examine other

people’s thought processes and approaches in similar scenarios.

	

	 At the same time, the approach of this thesis is limited by the choice

of addressing of idiosyncratic mental models. Because mental models differs

per individual, the interface will not and cannot assume an exhaustive map-

ping from visual components to program structure. For the same reason, this

interface will not attempt to generate code from the model, or a model from

the code, unlike many software-writing tools today. Lastly, the scope of this

thesis will focus on mental models, and other representations of code such

as data flow, control flow, and event flow, which are all very important to our

understanding of programs, will be considered in respect to mental models,

but will not be addressed directly.

	 To inform this design work, in addition to a literature review, a criti-

cal part of the initial stages of this thesis will be an ethnographic study aimed

at understanding how users from the target demographic visually represent

their mental models. The goals of the study will be to discover what visual

elements people naturally use to depict their mental models, as well as, given a

set of suggested visual elements, which are acquired for usage. Survey meth-

ods will be based upon one-on-one interviews as well as visual data similar to

Fig. 1 through 3.

Fig. 16: Sketch of “top-down”
programming approach: writing text
after creating visual stubs.

Fig. 17: Sketch of example of cross-
representation correspondence:
visual error notification.

10

	 Finally, the implementation of this work will be a redevelopment of the

author’s previous multiple-perspective project called MIDE, and will use the

same technical setup. The current system is primarily based on the Processing

Integrated Development Environment (IDE) [11], available under the GNU

General Public License, and the graph component of MIDE is currently

implemented via a version of the JGraph library [6] that is available under the

GNU Lesser General Public License. Processing is a programming language

based on Java, designed for the electronic arts and visual design communities

with the purpose of teaching the basics of computer programming in a visual

context [13]. The decision to implement this work in the Processing IDE is

based on the coincidence of purpose and on the consideration that members

of the Processing community comprise the primary user base that this work

intends to target.

Fig. 18 to 20: Sketches of graphic
possibilities for the visual represen-
tation.

11

	 This thesis proposes to make its primary contributions in the follow-

ing areas by answering some of these questions:

Expressive Graphical Tool: How broad a set of visual vocabulary, and what type

of visual vocabulary is necessary for most people to express their mental pic-

ture? How might the design of 20% of possible visual vocabulary express 80%

of users’ needs? Is there a subgroup of needs for which this cognitive transla-

tion approach is particularly suited? What set of visual vocabulary is particu-

larly suited for this subgroup?

Versatile Interface: How will the interface functionalities accommodate people’s

different programming styles and the different ways people might use their

visual representations? For example, some users might prefer to write code

prior to creating visuals, while others might try to create a visual outline be-

fore starting to fill in the code.

Flexible Visual-Textual Associations: How will the interface indicate cross-

representation relationships to aid program comprehension? For example, a

multiple-perspective interface could give visual indication of the parts of code

that are throwing an error, versus the fragments that are compilable, and er-

ror codes could be printed in the color of the corresponding visual element.

This design issue is of particular importance since the mapping from visual to

textual is not exhaustive.

5. Contributions

12

	 The project is intended to be primarily a design work and will be evalu-

ated in continual critiques by my advisor and readers. Through an iterative

design process of research, planning, implementation, critique, and refine-

ment, the work will be evaluated in light of the design principles identified

and refined in the initial research.

	 The evaluation of the implementation will be conducted in two phas-

es. The first, an informal alpha testing, will be mainly qualitative and obser-

vational, with a small number (<10) of subjects. The specific questions and

goals of the alpha test will be determined by the findings of the ethnographic

research to be conducted at the beginning of this project. Ideally the sub-

jects of the alpha test will the same members as the initial survey, or of similar

backgrounds.

	 The second phase is planned to be an external beta test over long-term

use, probably one week of time, where members of the Processing community

are invited to participate. Pre-and post-experiment questionnaires will be

used to collect primarily qualitative data for the beta phase.

6. Evaluation

13

	 David Small is an assistant professor at the MIT Media Laboratory

where he directs the Design Ecology Group. His work creates visual commu-

nication that incorporates new display and computational technologies, novel

software techniques, and perceptual and cognitive issues. Small received his

Ph.D. and M.S. in Media Arts and Sciences, and his B.S. in Cognitive Science,

all from MIT.

 	 Mitchel Resnick, LEGO Papert Professor of Learning Research and

head of the Lifelong Kindergarten group at the MIT Media Laboratory,

explores how new technologies can engage people in creative learning experi-

ences. Recently, Resnick’s group developed Scratch, an online community

where children use a graphical programming language to create and share

interactive stories, games, and animations.

	 Casey Reas is a professor in the department of Design | Media Arts at

the University of California, Los Angeles. He has exhibited his work interna-

tionally at institutions including Laboral (Gijon, Spain), The Cooper-Hewitt

Museum (New York), and the National Museum for Art, Architecture, and

Design (Oslo). With Ben Fry, he initiated Processing.org in 2001. Processing

is an open source programming language and environment for creating im-

ages, animation, and interaction.

7. Thesis Readers

14

	 For the implementation of this software project, no addition resources

are required beyond the computers and displays that currently belong to the

Design Ecology Group.

9. Timeline

8. Resources

15

M. M. Burnett and M.J. Baker, “A Classification System for Visual Pro-[1]	

gramming Languages,” Oregon State University Corvallis, OR, USA 1993.

A. DiSessa. “Models of Computation.” in Norman, D. A. and Draper, S. [2]	

W. ed. User Centered System Design; New Perspectives on Human-Computer Interac-

tion. L. Erlbaum Associates Inc., 1986.

S. Eick, J. Steffen, E. Summer. “Seesoft: a tool for visualizing line ori-[3]	

ented software statistics.” In Proc. of IEEE Transactions on Software Engi-

neering, 1992.

Field, by the OpenEndedGroup. http://openendedgroup.com/field/[4]	

T. R. G. Green and M. Petre. “Usability Analysis of Visual Program-[5]	

ming Environments: A ‘Cognitive Dimensions’ Framework.” Journal of Visual

Languages and Computing, vol. 7. (1996) 131-174.

JGraph. http://www.jgraph.com/[6]	

E. Kleiberg, H. van de Wetering, and J. J. van Wijk. “Botantical visu-[7]	

alization of huge hierarchies.” In Proc. IEEE Symposium on Information

Visualization, 2001.

Max/MSP. http://www.cycling74.com/products/max5[8]	

A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. “Visualizing pro-[9]	

10. References

16

grams with Jeliot 3.” In Proc. of the working conference on Advanced Visual

Interfaces, 2004.

W. B. Paley. “Code Profiles.” http://artport.whitney.org/commissions/[10]	

codedoc/Paley/CodeProfiles_800x600.htm

Processing. http://processing.org/ [11]	

Quartz Composer, by Apple Computer, Inc. http://developer.apple.[12]	

com/graphicsimaging/quartz/quartzcomposer.html

C. Reas and B. Fry. “Processing: a programming handbook for visual [13]	

designers and artists.” 2007.

S. Reiss. “PECAN: Program development systems that support mul-[14]	

tiple views.” In Proc. of the 7th International Conference on Software Engi-

neering, 1984.

M. Storey, F. Fracchia, and H. Müller. “Cognitive design elements to [15]	

support the construction of a mental model during software exploration.”

Journal of Systems and Software, 44. (1999) 171-185.

S. Turkle and S. Papert. “Epistemological Pluralism: Styles and Voices [16]	

within the Computer Culture.” Signs, Vol. 16, No. 1. (1990) 128-157.

Unified Modeling Language. http://www.uml.org/[17]	

vvvv. http://vvvv.org/[18]	

