Multiple-perspective interfaces for
software development environments

Agnes Chang

Thesis Proposal for the Degree of Master of Science at the
Masachusetts Institute of Technology
Fall 2009

Thesis Advisor David Small
Associate Professor
MIT Media Laboratory

Thesis Reader Mitchel Resnick
LEGO Papert Professor

of Learning Research
MIT Media Laboratory

Thesis Reader Casey Reas
Professor
UCLA Design | Media Arts

Table of Contents

Abstract
Motivation
Context
Methodology
Contributions
Evaluation
Thesis Readers
Resources
Timeline

References

SN W

II
12
13
14
14
15

1. Abstract

One of the major barriers designers and artists encounter when pro-
gramming digital media is the difficulty of translating the mental models of
their creations into a format and language that can be interpreted by comput-
ers. Creative people exhibit a variety of ways of thinking, and the constant
necessity to translate between their personal mental model and the program-
ming paradigms dictacted by current software representations limits the

programmer’s creative potential.

This thesis proposes to research, design, and implement a novel inter-
face that enables the programmer to define a conceptual visual representation
of computation to complement the traditional text-based code. In particular,
this work will focus on the following: the design of the set of visual vocabulary
necessary for idiosyncratic conceptual representation, the maintenance and
display of relationships between the visual and textual elements, and finally
interface support of multiple programming styles throughout different pro-
gramming stages of writing, reading, and debugging. The thesis seeks to offer
alternative methods of organizing, understanding, and learning programming
so that software can be a more accessible and expressive medium for all types

of designers and artists.

2. Motivation

Artists and designers often have clear intentions of what they would
like to create in the software medium, as well as mental models of how to
go about achieving the desired output. The real difficulties are encountered
when translating the mental models of their creations into code that can
be interpreted by computers. This thesis seeks to alleviate the tedious and
redundant aspects of congitive translation that currently form a significant

bottleneck in the software creative process.

In the creative process (Fig. 1), the artist begins with an intention (be
it well-formed or indefinite), then forms an internal model about the prob-
lem, and translates the model into code, which in turn produces the output
program. The translation process is difficult due to incongruities between
individuals’ approach to problems and the design of the particular program-
ming language. This step poses an obstacle even for expert programmers: after
setting a project aside for a short amount of time, when coming back to the
code, even the original author usually has difficulties recalling their train of

thought when they were writing the program.

cognitive
translation

A

class App §
5«14'?01!. out.
? print In(*Helfo')}

INTENTION MENTAL MODEL CODE OUTPUT

Fig. 1: The creative process.

(> ®]

] ”’f"{j‘j‘"‘]
o

e
\//. \,(/)h

"bc)v nee !
ﬂr@‘
K‘an\iﬁ :A.: :\'j
&

~> q@°

%z

E—)D @-

2 é’“

s&'l @wu,
g= J
jauf
re-(
sfore"

,,,TE,F»FAI‘&’,
Ry B3
gTNZ BTNY

| bropLe

MaTH
st PPor H'h\o" f,;.:l’\o\'\

Fig. 2 to 4: Examples of three
individuals’ conceptualization of the
classic two-player pong game.

More importantly, people exhibit a variety of approaches to thinking
about problems {16]. A preliminary examination of individuals’ visual repre-
sentations of their mental models (Fig. 2 through 4) demonstrate that mental
models comprise a variety of information. Some are functional descriptions,
such as “bounce a ball” (Fig. 2), while others are system elements, such as
“interface” and “buttons” (Fig. 4). DiSessa {2} has identified these types of
information as belonging to a functional model versus a structural model,
respectively. Each individual’s mental model is a combination of mental and
structural models fromed from personal experience — experience with vari-
ous programming paradigms, experience with the platform of choice, and

experience with the nature of the project they are trying to create, etc.

Further, since the nature of creative work is reiterative, throughout
this process the mental model is continuously revised and cognitive transla-
tion is continuously revisited. The creative process also applies at different
scales: in the pong scenario, the author might have intentions and models for
the behavior of a singular ball as well as a vision of a meta set of pong varia-

tions, and there are cognitive translations necessary at each of these scales.

However, a multiple perspective interface that enables documenta-
tion of the mental model in complement with traditional text-based software
creation can ease many of the difficulties with cognitive translation. It is the
intention of this thesis to demonstrate that by allowing users to represent
their idiosyncratic mental models and to use such representations to create,
maniputlate, and explore their programs, the process of creative coding can

become more direct and intuitive.

Fig. 5: The Unified Modeling Lan-
guage has a strict ruleset governing
its visual vocabulary and syntax.
From [17].

Fig. 6: Screenshot of the Max/MSP
visual language, which employs a
“river metaphor” for programming
streaming audiovisuals. From [8].

Fig. 7: Quartz Composer is a visual
programming language based on
the depiction of dataflow. From [12].

3. Context

While no work has yet directly addressed the cognitive translation gap,
this thesis is informed by long traditions of research in software writing and
software comprehension tools. In particular, the ideas proposed in this work
are a derivative of the interrelated fields of software visualization, graphical
modeling languages, and visual programming languages, each of which have

sought to address various bottlenecks in the creative process.

Much of software comprehension tools focuses on illustrating the
hidden mechanisms of the software, i.e. the structural model, such as data
flow and control flow. Software visualization designs vary from the aesthetic
{7} to the analytic {3}, and some are interactive {9}. Graphical modeling lan-
guages, such as the industry standard Unified Modeling Language {171, aimed
to develop a standard visual language to describe system structures. However,
in addition to passing over functional information, software visualization and
graphical modeling languages also operate disjoined from the programming

activity itself.

Certain visual programming languages employ structural perspectives
which offer alternative programming paradigms that align more closely with
common mental models for the target tasks these environments were de-
signed to solve. Languages based on dataflow, such as Max/MSP {81, vvvv{18],
and Quartz Composer[12} aptly employ the metaphor of river and tributaries
for projects based on streaming audio and video. However, these metaphors

are not easily generalizable to other tasks.

Fig. 8 & 9: Screenshots of PECAN
(1984), a program that supported
toggling between multiple views of
stored data structures. From [14].

s |_zon in | e o | s | e
L N
2
—— 7\ N
g g
\
i
\
\
\ / & \
__V/‘H» =\
= '

Fig. 10: Screenshot of SHriMP
(1999), designed to support the
construction of a mental model dur-
ing software exploration. From [15].

Fig. 11: Screenshot of Field environ-
ment, which enables visual combi-
nation of code, interface, and output
elements. From [4].

Several research studies have also looked into the concept of a soft-
ware tool that presented multiple views. An early example is PECAN {141,
a program environment that supported toggling between multiple views of
stored data structures, although the multiple views did not apply to the pro-
gram structure itself. The SHriMP tool {15} specifically addresses a variety of
cognitive models in its design, but as an exploration tool, it was not designed

to accommodate the writing and editing of code.

Of recent work, the Field programming environment {41 still in the
beta development phase also takes a multi-paradigm approach, and more
specifically, the complement of code with user-defined visual abstractions of
code. In addition, the Field environment enables the combination of user-
defined visual elements, with GUI elements that can replace specific code
syntax, with elements of visual output. Unfortunately, the combination on a
single canvas of so many visual elements that are semantically distinct requires

even more translation and causes cognitive overload.

4. Methodology

This thesis proposes to address the cognitive translation gap by re-
searching, designing, and implementing a multiple-perspective interface that
allows programmers to manipulate their program via a visual representation of
their mental model. Fig. 2 is a preliminary sketch of the interface, illustrating
an example of a pong program. On the left side the programmer can create
their own mental representation, and on the right is traditional code repre-
sentation. The visual elements on the left will be linked to their respective
code fragments, so that upon selection of a visual element on the left, the text

display on the right automatically navigates to the associated code.

File dit Sketch Help

midepong2
text{"SCORE " + [nteger.toString(rPlayerScore), width/Z+48, 25);

game information

print name and score /¢ Draw some poddles
rectHode(CENTER);
FiLI{AE0Y;
rect(15, PoddleHeight, paddleWidth, poddleHeight); // Left Poddle
rect{width-15, rPaddleteight, poddleVidth, poddlefeight); // Ficht Fo

the ‘net’
ize. the middle line

game pausing mechanics

paddles

/¢ Define the boundaries

4f test to ses 1f toushing Tight poddls
if ((xBollPos > width-circleRod-2a) &6 ((vBallPos >= rPaddleHeight—p
«Direction = 13 /¢ Moke the ball mowe from right to left
vipeed = (rPoddlefieight - yBallPos) ¢ 25; // Make position of inp
speed += spesdine;

3/ test to see if touching left paddle

i ((xBollPos < circleRade20) 56 ((vBallPos >= LPoddleHsight—poddlet
*Direction = 1; /¢ Moke the ball nove from left to right
yopeed = (IPoddletleight - yBallPos) ¢ 25; // Moke position of iuo
speed += speedine;

i

#¢ if hit top or botkom wall
if {{yBallPos = height-circleRad) || ¢yBallPos < circleRad)) {
yDirection = -yDirection;

i

#¢ Tf the ball goss off the right screen, resst it to the centre.
if (xBallPos = width) {

IF layerSooress;

speed = origspeed;

<BalIPos = width/2;

yapeed = rondon{-1., 1.};

definition move left paddle move right paddle

siza and speed
draw right paddle

draw left paddle
A

top and bottom wall left paddle right paddle

4/ It the ball goes off the left screen, reset it to the centre.
if (xBallPos < &) {

TP layerSooress;

speed = origspeed;

xBallPos = width/2;

yapeed = rondon{-1., 1.};
¥

¢ Drou the ball
Fill{256);

lal»

72, mmline

Line: 82, Offser: 3240 - 3315

Fig. 12: Screenshot of the complementary visual-textual interface. By selecting the “draw right paddle” visual element,
the text representation automatically navigates to the associated code. The code here is a Processing implementation of
the classic two-player pong game, cf. Fig. 3.

Fig. 13: Sketch of non-linear code ac-
cess via the visual representation.

Fig. 14: Sketch of example of cross-
representation correspondence: :
drag-and-drop rearrangement of
code.

Fig. 15: Sketch of “bottom-up” pro-
gramming approach: creating visual
elements after text.

The goals of this interface are threefold. First, to allow programmers
to organize their code along visual and spatial dimensions, such as color,
shape, and location. Secondly, to serve as an extension of memory for users,
so that they can concentrate their efforts on the design of the project without
needing to continuously undergo the same mental translations as they reiter-
ate over they designs. Finally, such an interface can aid the learning process
by allowing users to reference their own past work, as well as examine other

people’s thought processes and approaches in similar scenarios.

At the same time, the approach of this thesis is limited by the choice
of addressing of idiosyncratic mental models. Because mental models difters
per individual, the interface will not and cannot assume an exhaustive map-
ping from visual components to program structure. For the same reason, this
interface will not attempt to generate code from the model, or a model from
the code, unlike many software-writing tools today. Lastly, the scope of this
thesis will focus on mental models, and other representations of code such
as data flow, control flow; and event flow, which are all very important to our
understanding of programs, will be considered in respect to mental models,

but will not be addressed directly.

To inform this design work, in addition to a literature review, a criti-
cal part of the initial stages of this thesis will be an ethnographic study aimed
at understanding how users from the target demographic visually represent
their mental models. The goals of the study will be to discover what visual
elements people naturally use to depict their mental models, as well as, given a
set of suggested visual elements, which are acquired for usage. Survey meth-
ods will be based upon one-on-one interviews as well as visual data similar to

Fig. 1 through 3.

Fig. 16: Sketch of “top-down”
programming approach: writing text
after creating visual stubs.

Fig. 17: Sketch of example of cross-
representation correspondence:
visual error notification.

Finally, the implementation of this work will be a redevelopment of the
author’s previous multiple-perspective project called MIDE, and will use the
same technical setup. The current system is primarily based on the Processing
Integrated Development Environment (IDE) {11}, available under the GNU
General Public License, and the graph component of MIDE is currently
implemented via a version of the JGraph library {6} that is available under the
GNU Lesser General Public License. Processing is a programming language
based on Java, designed for the electronic arts and visual design communities
with the purpose of teaching the basics of computer programming in a visual
context {13}. The decision to implement this work in the Processing IDE is
based on the coincidence of purpose and on the consideration that members
of the Processing community comprise the primary user base that this work

intends to target.

I0

Fig. 18 to 20: Sketches of graphic
possibilities for the visual represen-
tation.

5. Contributions

This thesis proposes to make its primary contributions in the follow-

ing areas by answering some of these questions:

Expressive Graphical Tool: How broad a set of visual vocabulary, and what type
of visual vocabulary is necessary for most people to express their mental pic-
ture? How might the design of 20% of possible visual vocabulary express 80%
of users’ needs? Is there a subgroup of needs for which this cognitive transla-
tion approach is particularly suited? What set of visual vocabulary is particu-

larly suited for this subgroup?

Versatile Interface: How will the interface functionalities accommodate people’s
different programming styles and the different ways people might use their
visual representations? For example, some users might prefer to write code
prior to creating visuals, while others might try to create a visual outline be-

fore starting to fill in the code.

Flexible Visual-Iextual Associations: How will the interface indicate cross-
representation relationships to aid program comprehension? For example, a
multiple-perspective interface could give visual indication of the parts of code
that are throwing an error, versus the fragments that are compilable, and er-
ror codes could be printed in the color of the corresponding visual element.
This design issue is of particular importance since the mapping from visual to

textual is not exhaustive.

II

6. Evaluation

The project is intended to be primarily a design work and will be evalu-
ated in continual critiques by my advisor and readers. Through an iterative
design process of research, planning, implementation, critique, and refine-
ment, the work will be evaluated in light of the design principles identified

and refined in the initial research.

The evaluation of the implementation will be conducted in two phas-
es. The first, an informal alpha testing, will be mainly qualitative and obser-
vational, with a small number (<10) of subjects. The specific questions and
goals of the alpha test will be determined by the findings of the ethnographic
research to be conducted at the beginning of this project. Ideally the sub-
jects of the alpha test will the same members as the initial survey, or of similar

backgrounds.

The second phase is planned to be an external beta test over long-term
use, probably one week of time, where members of the Processing community
are invited to participate. Pre-and post-experiment questionnaires will be

used to collect primarily qualitative data for the beta phase.

12

7. Thesis Readers

David Small is an assistant professor at the MIT Media Laboratory
where he directs the Design Ecology Group. His work creates visual commu-
nication that incorporates new display and computational technologies, novel
software techniques, and perceptual and cognitive issues. Small received his
Ph.D. and M.S. in Media Arts and Sciences, and his B.S. in Cognitive Science,
all from MIT.

Mitchel Resnick, LEGO Papert Professor of Learning Research and
head of the Lifelong Kindergarten group at the MIT Media Laboratory,
explores how new technologies can engage people in creative learning experi-
ences. Recently, Resnick’s group developed Scratch, an online community
where children use a graphical programming language to create and share

interactive stories, games, and animations.

Casey Reas is a professor in the department of Design | Media Arts at
the University of California, Los Angeles. He has exhibited his work interna-
tionally at institutions including Laboral (Gijon, Spain), The Cooper-Hewitt
Museum (New York), and the National Museum for Art, Architecture, and
Design (Oslo). With Ben Fry, he initiated Processing.org in 2001. Processing
is an open source programming language and environment for creating im-

ages, animation, and interaction.

13

8. Resources

For the implementation of this software project, no addition resources
are required beyond the computers and displays that currently belong to the

Design Ecology Group.

9. Timeline

DEC 0Q JAN 10 FEB 10 MAR 10 APR 10

MILESTONES
design sketches *
alpha version *
beta version
st written draft »
submission »

*

SOFTWARE
ideation/design 1
implementation I
alpha test and revision
beta test and evaluation

——
—
WRITING
background section —
system description section —
evaluation section —
finalize thesis EEEE——
reviews with readers —

14

10. References

{11 M. M. Burnett and M.J. Baker, “A Classification System for Visual Pro-

gramming Languages,” Oregon State University Corvallis, OR, USA 1993.

[2} A. DiSessa. “Models of Computation.” in Norman, D. A. and Draper, S.
W. ed. User Centered System Design; New Perspectives on Human-Computer Interac-

tion. L. Erlbaum Associates Inc., 1986.

51 S. Eick, J. Steffen, E. Summer. “Seesoft: a tool for visualizing line ori-
ented software statistics.” In Proc. of IEEE Transactions on Software Engi-

neering, 1992.

{4} Field, by the OpenEndedGroup. http://openendedgroup.com/field/

[s1 T.R.G. Green and M. Petre. “Usability Analysis of Visual Program-
ming Environments: A ‘Cognitive Dimensions’ Framework.” Journal of Visual

Languages and Computing, vol. 7. (1996) 131-174.
{61 JGraph. http://wwwjgraph.com/

{7} E.Kleiberg, H. van de Wetering, and J. J. van Wijk. “Botantical visu-
alization of huge hierarchies.” In Proc. IEEE Symposium on Information

Visualization, 2001.
[81 Max/MSP http://www.cycling74.com/products/maxs

[o] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. “Visualizing pro-

15

grams with Jeliot 3.” In Proc. of the working conference on Advanced Visual

Interfaces, 2004.

{10} W.B. Paley. “Code Profiles.” http://artport.whitney.org/commissions/
codedoc/Paley/CodeProfiles_800ox600.htm

{1} Processing. http://processing.org/

{121 Quartz Composer, by Apple Computer, Inc. http://developer.apple.

com/graphicsimaging/quartz/quartzcomposer.html

{131 C.Reas and B. Fry. “Processing: a programming handbook for visual

designers and artists.” 2007.

{14} S. Reiss. “PECAN: Program development systems that support mul-
tiple views.” In Proc. of the 7th International Conference on Software Engi-

neering, 1984.

{151 M. Storey, F. Fracchia, and H. Miiller. “Cognitive design elements to
support the construction of a mental model during software exploration.”

Journal of Systems and Software, 44. (1999) 171-185.

{161 S.Turkle and S. Papert. “Epistemological Pluralism: Styles and Voices
within the Computer Culture.” Signs, Vol. 16, No. 1. (1990) 128-157.

{171 Unified Modeling Language. http://www.uml.org/

{181 vvvv http:/~vvvvorg/

16

